Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Hazard Mater ; 471: 134378, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691926

RESUMO

The worldwide emergence of antimicrobial resistance (AMR) poses a substantial risk to human health and environmental stability. In agriculture, organic amendments (derived from organic sources such as manure, and plant residues) are beneficial in restoring soil properties and providing essential nutrients to crops but raise concerns about harboring antibiotic resistance, which emphasizes the need for vigilant monitoring and strategic interventions in their application. The current study assessed the impact of farming practices (organic and conventional) in a three-year field experiment with pigeonpea-wheat cropping system, focusing on the transmission of AMR using culture-dependent and -independent approaches, and soil nutrient content. Markers for antibiotic resistance genes (ARGs) (aminoglycoside-aacA, ß-lactam-blaTEM, chloramphenicol-cmlA1, macrolide-ermB, sulfonamides-sul1, sul2, and tetracycline-tetO) and integrons (intl1 and intl2) were targeted using qPCR. Manure amendments, particularly FYM1, exhibited a higher abundance of copies of ARGs compared to the rhizospheric soil. Organic farming was associated with higher copies of intl2, sul1, blaTEM, and tetO genes, while conventional farming showed increased copies of sul2 and ermB genes in the rhizosphere. Significant positive correlations were observed among soil nutrient contents, ARGs, and MGEs. The notable prevalence of ARGs linked to manure amendments serves as a cautionary note, demanding responsible management practices.


Assuntos
Cajanus , Esterco , Microbiologia do Solo , Triticum , Cajanus/genética , Esterco/microbiologia , Triticum/genética , Antibacterianos/farmacologia , Solo/química , Genes Bacterianos , Agricultura Orgânica , Produtos Agrícolas , Resistência Microbiana a Medicamentos/genética , Agricultura , Integrons/genética
2.
Sci Rep ; 14(1): 10356, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710732

RESUMO

Herbicide use may pose a risk of environmental pollution or evolution of resistant weeds. As a result, an experiment was carried out to assess the influence of different non-chemical weed management tactics (one hoeing (HH) at 12 DAS followed by (fb) one hand weeding at 30 DAS, one HH at 12 DAS fb Sesbania co-culture and its mulching, one HH at 12 DAS fb rice straw mulching @ 4t ha-1, one HH at 12 DAS fb rice straw mulching @ 6 t ha-1) on weed control, crop growth and yield, and economic returns in direct-seeded rice (DSR). Experiment was conducted during kharif season in a split-plot design and replicated thrice. Zero-till seed drill-sown crop (PN) had the lowest weed density at 25 days after sowing (DAS), while square planting geometry (PS) had the lowest weed density at 60 DAS. PS also resulted in a lower weed management index (WMI), agronomic management index (AMI), and integrated weed management index (IWMI), as well as higher growth attributes, grain yield (4.19 t ha-1), and net return (620.98 US$ ha-1). The cultivar Arize 6444 significantly reduced weed density and recorded higher growth attributes, yield, and economic return. In the case of weed management treatments, one HH at 12 DAS fb Sesbania co-culture and its mulching had the lowest weed density, Shannon-weinner index and eveness at 25 DAS. However, one hoeing at 12 DAS fb one hand weeding at 30 DAS (HH + WH) achieved the highest grain yield (4.85 t ha-1) and net returns (851.03 US$ ha-1) as well as the lowest weed density at 60 DAS. PS × HH + WH treatment combination had the lowest weed persistent index (WPI), WMI, AMI, and IWMI, and the highest growth attributes, production efficiency, and economic return.


Assuntos
Produtos Agrícolas , Oryza , Plantas Daninhas , Controle de Plantas Daninhas , Oryza/crescimento & desenvolvimento , Controle de Plantas Daninhas/métodos , Plantas Daninhas/crescimento & desenvolvimento , Plantas Daninhas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Herbicidas/farmacologia , Produção Agrícola/métodos
4.
Int. microbiol ; 27(2): 477-490, Abr. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-232294

RESUMO

Excessive use of chemicals to enhance soil nutrient status and crop yield has resulted in a decline in soil health. Organic farming promotes organic amendments, which help to balance the ecosystem. Understanding the dynamic patterns of belowground microbial populations is essential for developing sustainable agricultural systems. Therefore, the study was designed to evaluate the effect of different agri-practices on rhizospheric bacterial diversity and crop yield in an Indian agricultural system. A 3-year field experiment was set up in a randomized block design using Cajanus cajan as a model crop, comparing conventional farming with organic practice (with animal manure and bio-compost as amendments). Plant and rhizospheric soil samples were collected at the harvest stage for assessing various growth attributes, and for characterizing rhizospheric bacterial diversity. Enhanced crop productivity was seen in conventional farming, with a 2.2-fold increase in grain yield over control. However, over the 3 years, an overall positive impact was observed in the bio-compost-based organic amendment, in terms of bacterial abundance, over other treatments. At the harvest stage of the third cropping season, the bacterial diversity in the organic treatments showed little similarity to the initial bacterial community composition of the amendment applied, indicating stabilization along the growth cycles. The study emphasizes the significance of the choice of the amendment for ushering in agricultural sustainability.(AU)


Assuntos
Humanos , Microbiologia do Solo , Agricultura/métodos , Bactérias , Cajanus/microbiologia , Ecossistema , Solo/química
5.
Plant Cell Environ ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436101

RESUMO

A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.

6.
Sci Total Environ ; 917: 170418, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38286294

RESUMO

Conservation-agriculture and organic-farming are two sustainable-agriculture approaches to ensure food security and environmental-sustainability. Hence, a field study assessed the productivity, soil-health and carbon-dynamics of soybean-wheat cropping system (SWCS) under four tillage and residue-management practices (TRMPs) viz., Conventional-tillage without residues (CT-R), conventional-tillage with residue-retention in both crops at 3 t ha-1 each (CT + R), zero-tillage without residues (ZT-R), and zero-tillage with residue-retention in both crops at 3 t ha-1 each (ZT + R); and five organic-nutrient-management-practices (ONMPs) in both crops viz., 100 % RDF (N1), 100 % RDN through FYM (N2), 100 % RDN through VC (N3), 100 % RDN through FYM + Biofertilizers + Cow-urine + Panchgavya + Jeevamrut (N4), and 100 % RDN through VC + Biofertilizers + Cow-urine + Panchgavya + Jeevamrut (N5), in split-plot-design replicated-thrice. Among TRMPs, ZT + R enhanced system-productivity (SEY) by ∼17.2 % over CT-R, besides improved soil available-N, P, K by 6.4, 6.5 and 6.5 %, respectively. SMBC, SMBN and SMBP were higher under ZT + R by 16.2, 21.5 and 10.8 % over CT-R, respectively. ZT + R had higher soil enzyme activities of DHA, Acid-P, ALP, URA, and FDA over CT-R by 19.4, 20.7, 21.5, 20.7 and 15.2 %, respectively. ZT + R also had higher VLC, ACP, LI and CMI over CT-R. Among ONMPs, the natural-farming based ONMP, N5 considerably improved SMBC, SMBN, SMBP, FDA, DHA, Acid-P, URA, and ALP by 12.7-12.9 % over N1 (100 % RDF). ONMP-N5 improved the available-N, P, K content over N1 by 6.6, 5.8 and 6.7 %, respectively. ONMP-N5 had higher (p < 0.05) microbial-count, VLC, APC, LI and CMI; however, system-productivity was ∼4.1 % lower than N1 in this two-years' short-study which further need investigation in multi-location long-term experiments. Overall, the dual-crop basis ZT + R at 6 t ha-1 year-1 + NF-based ONMPs (N5) may harness higher and sustained productivity under SWCS besides advancing soil-health and soil carbon-pools in sandy-loam soils of north-Indian plains and similar soils across south-Asia.

7.
Int Microbiol ; 27(2): 477-490, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37500936

RESUMO

Excessive use of chemicals to enhance soil nutrient status and crop yield has resulted in a decline in soil health. Organic farming promotes organic amendments, which help to balance the ecosystem. Understanding the dynamic patterns of belowground microbial populations is essential for developing sustainable agricultural systems. Therefore, the study was designed to evaluate the effect of different agri-practices on rhizospheric bacterial diversity and crop yield in an Indian agricultural system. A 3-year field experiment was set up in a randomized block design using Cajanus cajan as a model crop, comparing conventional farming with organic practice (with animal manure and bio-compost as amendments). Plant and rhizospheric soil samples were collected at the harvest stage for assessing various growth attributes, and for characterizing rhizospheric bacterial diversity. Enhanced crop productivity was seen in conventional farming, with a 2.2-fold increase in grain yield over control. However, over the 3 years, an overall positive impact was observed in the bio-compost-based organic amendment, in terms of bacterial abundance, over other treatments. At the harvest stage of the third cropping season, the bacterial diversity in the organic treatments showed little similarity to the initial bacterial community composition of the amendment applied, indicating stabilization along the growth cycles. The study emphasizes the significance of the choice of the amendment for ushering in agricultural sustainability.


Assuntos
Cajanus , Cajanus/microbiologia , Ecossistema , Agricultura/métodos , Solo/química , Bactérias , Microbiologia do Solo
8.
Front Nutr ; 10: 1205926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671196

RESUMO

Micronutrient malnutrition and suboptimal yields pose significant challenges in rainfed cropping systems worldwide. To address these issues, the implementation of climate-smart management strategies such as conservation agriculture (CA) and system intensification of millet cropping systems is crucial. In this study, we investigated the effects of different system intensification options, residue management, and contrasting tillage practices on pearl millet yield stability, biofortification, and the fatty acid profile of the pearl millet. ZT systems with intercropping of legumes (cluster bean, cowpea, and chickpea) significantly increased productivity (7-12.5%), micronutrient biofortification [Fe (12.5%), Zn (4.9-12.2%), Mn (3.1-6.7%), and Cu (8.3-16.7%)], protein content (2.2-9.9%), oil content (1.3%), and fatty acid profile of pearl millet grains compared to conventional tillage (CT)-based systems with sole cropping. The interactive effect of tillage, residue retention, and system intensification analyzed using GGE statistical analysis revealed that the best combination for achieving stable yields and micronutrient fortification was residue retention in both (wet and dry) seasons coupled with a ZT pearl millet + cowpea-mustard (both with and without barley intercropping) system. In conclusion, ZT combined with residue recycling and legume intercropping can be recommended as an effective approach to achieve stable yield levels and enhance the biofortification of pearl millet in rainfed agroecosystems of South Asia.

9.
Cureus ; 15(7): e41983, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37593269

RESUMO

Acute total occlusion of the left main artery is a fatal event and is often accompanied by cardiogenic shock. Patients who experience this event have high mortality rates. Early percutaneous coronary intervention (PCI) with hemodynamic support has proven to improve clinical outcomes for these patients. Here we report a case of a 60-year-old man, who came into our emergency room with an acute anterior wall myocardial infarction accompanied by cardiogenic shock. He had a totally occluded left main artery on coronary angiography, necessitating cardiopulmonary resuscitation, followed by PCI with implantation of a drug-eluting stent along with hemodynamic support. Identification of typical ECG changes is crucial in patients with acute coronary syndrome caused by the occlusion of the left main coronary artery. A quick decision to perform a PCI procedure using early circulatory mechanical devices (intra-aortic balloon pump) is critical to patient survival.

10.
Sci Total Environ ; 899: 165589, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481087

RESUMO

Conventional farming practices are energy and carbon-intensive. Low-cost technologies like AM-fungi (AMF) and precision P-management vis-à-vis precision irrigation-scheduling may enhance P-bioavailability, and crop- and water-productivity with reduced energy and carbon-footprints in acid-Alfisol of north-western Himalayas. Hence, an experiment was done in okra (Abelmoschus esculentus)-pea (Pisum sativum) cropping system (OPCS) using AMF (Glomus mosseae) at three inorganic-P levels (50, 75 & 100 % of soil-test based P-dose) and two irrigation-regimes (40 & 80 % AWC). AMF-inoculation significantly enhanced the system-productivity (∼11 %), bio-energy output (∼8 %) and SOC-storage over non-AMF plots in OPCS. Carbon-input use followed the trend of water>diesel>fertilizers> FYM > herbicides> pesticides>AMF in OPCS. AMF-inoculation significantly reduced the carbon-footprints (0.466 kg CO2-e kg-1) by ∼10.2 % over non-AMF plots. Soil-test based 100 % P-dose significantly enhanced the system-productivity (6.3-15.6 %) and bio-energy output (4.7-12.6 %) with lesser carbon-footprints (5.3-15 %) over 50 and 75 % P-dose. Irrigation at 80 % AWC enhanced system-productivity (∼4.1 %), however at 40 % AWC reduced carbon-footprints by ∼11.7 % besides saving irrigation-water by ∼24 % (150 mm ha-1/year) in OPCS. Hence, farmers must necessarily use AMF-inoculation coupled with soil-test based P-fertilization (75-100 %) while preserving a balance in irrigation water-use at 40-80 % AWC depending upon water-availability for higher crop- and water-productivity besides lesser energy and carbon-footprints in OPCS in Himalayan acid Alfisol.

11.
J Minim Access Surg ; 19(3): 427-432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470632

RESUMO

Introduction: The aim of this study was to compare the peri-operative outcomes, especially intraoperative surgeon workload and early post-operative pain, following midline ventral hernia repair by laparoscopic enhanced-view totally extraperitoneal (eTEP) approach and laparoscopic intraperitoneal onlay mesh plus (IPOM plus) approach. Patients and Methods: This single-centre randomised control trial study was conducted from January 2020 to June 2022. A total of 60 adult patients undergoing elective ventral hernia surgery with small- and medium-sized midline defects were included. Intraoperative surgeon workload and early post-operative pain were systematically recorded and analysed for each procedure. Results: Out of 30 patients assigned to each group, 29 patients underwent eTEP mesh repair and 27 patients underwent successful IPOM plus repair. The intraoperative surgeon's workload, especially mental demand, physical demand, task complexity and degree of difficulty as reported and felt by the operating surgeon, was significantly higher in the eTEP mesh repair group compared to IPOM plus group (P < 0.001) with comparable operating room distractions (P = 0.039). The mean overall post-operative pain score on post-operative day 1 was slightly less in eTEP mesh repair (4.28 ± 1.12) group compared to IPOM plus group (4.93 ± 1.17), which was statistically insignificant (P = 0.042). The eTEP group had significantly longer operative time and length of hospital stay compared to the IPOM plus group. Conclusion: Our study revealed significantly longer operative time, higher surgical workload and increased length of hospital stay in the eTEP group with comparable early post-operative pain in both groups, thus making eTEP mesh repair a more difficult and challenging procedure.

12.
Sci Rep ; 13(1): 10226, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353506

RESUMO

Pearlmillet-chickpea cropping system (PCCS) is emerging as an important sequence in semi-arid regions of south-Asia owing to less water-requirement. However, chickpea (dry-season crop) faces comparatively acute soil moisture-deficit over pearlmillet (wet-season crop), limiting overall sustainability of PCCS. Hence, moisture-management (specifically in chickpea) and system intensification is highly essential for sustaining the PCCS in holistic manner. Since, conservation agriculture (CA) has emerged is an important climate-smart strategy to combat moisture-stress alongwith other production-vulnerabilities. Hence, current study comprised of three tillage systems in main-plots viz., Complete-CA with residue retention (CAc), Partial-CA without residue-retention (CAp), and Conventional-tillage (ConvTill) under three cropping systems in sub-plots viz., conventionally grown pearlmillet-chickpea cropping system (PCCS) alongwith two intensified systems i.e. pearlmillet-chickpea-fodder pearlmillet cropping system (PCFCS) and pearlmillet-chickpea-mungbean cropping system (PCMCS) in split-plot design. The investigation outcomes mainly focused on chickpea (dry-season crop) revealed that, on an average, there was a significant increase in chickpea grain yield under CAc to the tune of 27, 23.5 and 28.5% under PCCS, PCFCS and PCMCS, respectively over ConvTill. NPK uptake and micronutrient (Fe and Zn) biofortification in chickpea grains were again significantly higher under triple zero-tilled CAc plots with residue-retention; which was followed by triple zero-tilled CAp plots without residue-retention and the ConvTill plots. Likewise, CAc under PCMCS led to an increase in relative leaf water (RLW) content in chickpea by ~ 20.8% over ConvTill under PCCS, hence, ameliorating the moisture-stress effects. Interestingly, CA-management and system-intensification significantly enhanced the plant biochemical properties in chickpea viz., super-oxide dismutase, ascorbate peroxidase, catalase and glutathione reductase; thus, indicating their prime role in inducing moisture-stress tolerance ability in moisture-starved chickpea. Triple zero-tilled CAc plots also reduced the N2O fluxes in chickpea but with slightly higher CO2 emissions, however, curtailed the net GHG-emissions. Triple zero-tilled cropping systems (PCFCS and PCMCS) both under CAc and Cap led to a significant improvement in soil microbial population and soil enzymes activities (alkaline phosphatase, fluorescein diacetate, dehydrogenase). Overall, the PCCS system-intensification with mungbean (PCMCS) alongwith triple zero-tillage with residue-retention (CAc) may amply enhance the productivity, micronutrient biofortification and moisture-stress tolerance ability in chickpea besides propelling the ecological benefits under semi-arid agro-ecologies. However, the farmers should preserve a balance while adopting CAc or CAp where livestock equally competes for quality fodder.


Assuntos
Cicer , Fabaceae , Pennisetum , Oligoelementos , Biofortificação , Micronutrientes , Agricultura , Solo/química , Clima Desértico , Água
13.
J Invasive Cardiol ; 35(5): E273-E274, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37219853

RESUMO

Major aortopulmonary collaterals (APCs) are more common with tetralogy of Fallot (TOF) with pulmonary atresia. Collateral arteries, when present, arise most commonly from the descending thoracic aorta, less commonly from the subclavian arteries, and rarely from the abdominal aorta or its branches or from the coronary arteries. Collaterals arising from the coronary arteries can cause myocardial ischemia due to coronary steal phenomenon. They can be addressed either by endovascular interventions like coiling or surgical ligation during the intracardiac repair. Coronary anomalies are seen in 5%-7% of TOF patients. In approximately 4% of TOF patients, the left anterior descending artery (LAD) or an accessory LAD takes origin from the right coronary artery or right coronary sinus and crosses the right ventricular outflow tract in its course toward the left ventricle. Presence of such anomalous coronary anatomy poses certain challenges during intracardiac repair of TOF.


Assuntos
Seio Coronário , Tetralogia de Fallot , Humanos , Adulto , Vasos Coronários , Coração , Ventrículos do Coração
14.
Cureus ; 15(3): e35919, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37050994

RESUMO

Introduction Stroke is a devastating and disabling cerebrovascular disease with a significant amount of residual deficit. The prevalence of stroke is in a rising trend in India. Larger studies are needed for the evaluation of risk factors. Material and methods This cross-sectional study aimed to assess the clinical profile of patients with stroke. The demographic details of the patients were taken, comorbidities were noted, and laboratory tests were done. Observation The most common age group who presented with stroke was 61-80 years, followed by 41-60 years, comprising 47% and 46%, respectively. Ischemic stroke was more common (60%) than hemorrhagic stroke (40%). Male patients were more than female patients. Alcohol, smoking, hypertension, diabetes, anemia, and proteinuria were present in the study group. Conclusion Regular evaluation of blood pressure, blood sugar, lipid profile, and proteinuria should be routinely done in patients with diabetes and hypertension who are more than 40 years old.

15.
Obes Surg ; 33(6): 1694-1701, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087518

RESUMO

PURPOSE: The clinical benefits of bariatric surgery are well-established, but the impact of bariatric surgery on psychosocial outcomes such as health-related quality of life (HRQL) is less clear. The aim of this study is to assess the Quality of life (QOL) as a whole and in separate domains in post-bariatric surgery patients. METHODOLOGY: A single unit cross-sectional analysis of a prospective study is done on QOL in 51 patients undergoing laparoscopic sleeve gastrectomy at tertiary hospital. QOL was assessed by WHOQOL-BREF (World Health Organisation Quality of Life questionnaire -Brief version) questionnaire and Global Quality of Life Scale in each patient. Scores were calculated on a 0-100 scale and results compared. RESULTS: The median scores given by patients before surgery were 14, 21, 42, 40 and 12.5 for each of the parameters physical, psychological, social, environmental and overall well-being respectively. The median scores for after surgery were 86, 87, 91, 88 and 87.5 respectively. The difference was significant (p value 0.001). Global QOL after surgery, calculated year wise, showed QOL scores of 90, 100, 95 and 80 in patients with 1 year, 2 years, 3 years and 4 years of follow-up without any significant difference (p value 0.502). CONCLUSION: Through this study, we emphasize the need for the selection of a standardised scale by international organisations to compare the different studies. By proving the significant differences in the QOL of patients who underwent LSG [laparoscopic sleeve gastrectomy], we suggest to consider the Quality of Life as one of the criteria to consider a patient for bariatric surgery.


Assuntos
Cirurgia Bariátrica , Laparoscopia , Obesidade Mórbida , Humanos , Qualidade de Vida , Obesidade Mórbida/cirurgia , Estudos Prospectivos , Estudos Transversais , Redução de Peso , Cirurgia Bariátrica/métodos , Gastrectomia/métodos , Laparoscopia/métodos , Resultado do Tratamento
16.
Sci Rep ; 13(1): 4434, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932116

RESUMO

Indian basil (Ocimum basillicum), lemongrass (Cymbopogon flexuosus) and coriander (Coriandrum sativum) leaves are a good source of aromatic oils; however, their extraction volume is low. Hence, two pre-treatment systems (ohmic-heating and ultrasonic) were devised for extraction of essential oils (EO) from the leaves of these three plant spp., which consequently enhanced the EO yield and saved the time and energy. First of all, an experimental set-up was developed for ohmic-heating pre-treatment which was subjected to the optimization of electric conductivity of lemongrass and coriander leaves at 26.25 V/cm and for Indian basil at 22.5 V/cm voltage gradient. An Experimental setup was also developed for ohmic heating-assisted hydro-distillation (OHD). Finally, conventional Clevenger hydro-distillation (CHD), OHD, ultrasonic-assisted conventional hydro-distillation (UACHD) and ultrasonic-assisted ohmic-heating hydro-distillation (UAOHD) methods were evaluated for their effectiveness in the extraction of the EOs. The OHD took 3.5 h time with 410 W power consumption compared to 5 h time and 500 W power consumption in CHD of sleeted leaves. Likewise, a saving of ~ 86% in time and 74% in energy consumption was observed for EO extraction through UAOHD over CHD. Quantity of EOs extracted from all three aromatic plant spp. leaves followed the trend of UAOHD > UACHD > OHD > CHD methods, respectively. Overall, ultrasonic pre-treatment coupled with ohmic-heating assisted hydro-distillation (UAOHD) proved as an innovative and effective clean EO extraction technology which took shorter extraction time and lesser energy consumption with better EO yield over the UACHD, OHD and CHD methods from the leaves of Indian basil, lemongrass and coriander.


Assuntos
Coriandrum , Cymbopogon , Ocimum basilicum , Óleos Voláteis , Ultrassom , Calefação , Folhas de Planta
17.
Environ Sci Pollut Res Int ; 30(10): 25141-25147, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34757556

RESUMO

Antimicrobial resistance (AMR) in cattle is widespread because of the increased use of antibiotics to combat microbial diseases and enhance milk production. The cattle excreta released into the environment can be a potent source of contamination in spreading antibiotic resistance, especially upon its application in agriculture. However, the correlation of AMR profile of manure with other physico-chemical parameters is limited. Therefore, the study aimed to generate AMR profiles for manure samples collected from 25 different sites of two agriculturally important states in India, Madhya Pradesh and Uttar Pradesh. Samples were tested for physico-chemical parameters, viz., electrical conductivity, pH, total nitrogen (N), total phosphorus (P), and total potassium (K). Bacterial community analysis was done by culture-dependent and culture-independent methods. The influence of feeding practices, nutrient concentration, and bacterial abundance on antibiotic resistance profiles was observed in collected manure samples. Manures of intensive feeding animals harbored highly resistant profiles of bacteria as compared to natural grazing cattle.


Assuntos
Antibacterianos , Esterco , Animais , Bovinos , Antibacterianos/farmacologia , Esterco/análise , Farmacorresistência Bacteriana , Agricultura , Bactérias
18.
Front Plant Sci ; 14: 1282217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192691

RESUMO

Sensor-based decision tools provide a quick assessment of nutritional and physiological health status of crop, thereby enhancing the crop productivity. Therefore, a 2-year field study was undertaken with precision nutrient and irrigation management under system of crop intensification (SCI) to understand the applicability of sensor-based decision tools in improving the physiological performance, water productivity, and seed yield of soybean crop. The experiment consisted of three irrigation regimes [I1: standard flood irrigation at 50% depletion of available soil moisture (DASM) (FI), I2: sprinkler irrigation at 80% ETC (crop evapo-transpiration) (Spr 80% ETC), and I3: sprinkler irrigation at 60% ETC (Spr 60% ETC)] assigned in main plots, with five precision nutrient management (PNM) practices{PNM1-[SCI protocol], PNM2-[RDF, recommended dose of fertilizer: basal dose incorporated (50% N, full dose of P and K)], PNM3-[RDF: basal dose point placement (BDP) (50% N, full dose of P and K)], PNM4-[75% RDF: BDP (50% N, full dose of P and K)] and PNM5-[50% RDF: BDP (50% N, full P and K)]} assigned in sub-plots using a split-plot design with three replications. The remaining 50% N was top-dressed through SPAD assistance for all the PNM practices. Results showed that the adoption of Spr 80% ETC resulted in an increment of 25.6%, 17.6%, 35.4%, and 17.5% in net-photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular CO2 concentration (Ci), respectively, over FI. Among PNM plots, adoption of PNM3 resulted in a significant (p=0.05) improvement in photosynthetic characters like Pn (15.69 µ mol CO2 m-2 s-1), Tr (7.03 m mol H2O m-2 s-1), Gs (0.175 µmol CO2 mol-1 year-1), and Ci (271.7 mol H2O m2 s-1). Enhancement in SPAD (27% and 30%) and normalized difference vegetation index (NDVI) (42% and 52%) values were observed with nitrogen (N) top dressing through SPAD-guided nutrient management, helped enhance crop growth indices, coupled with better dry matter partitioning and interception of sunlight. Canopy temperature depression (CTD) in soybean reduced by 3.09-4.66°C due to adoption of sprinkler irrigation. Likewise, Spr 60% ETc recorded highest irrigation water productivity (1.08 kg ha-1 m-3). However, economic water productivity (27.5 INR ha-1 m-3) and water-use efficiency (7.6 kg ha-1 mm-1 day-1) of soybean got enhanced under Spr 80% ETc over conventional cultivation. Multiple correlation and PCA showed a positive correlation between physiological, growth, and yield parameters of soybean. Concurrently, the adoption of Spr 80% ETC with PNM3 recorded significantly higher grain yield (2.63 t ha-1) and biological yield (8.37 t ha-1) over other combinations. Thus, the performance of SCI protocols under sprinkler irrigation was found to be superior over conventional practices. Hence, integrating SCI with sensor-based precision nutrient and irrigation management could be a viable option for enhancing the crop productivity and enhance the resource-use efficiency in soybean under similar agro-ecological regions.

19.
Front Plant Sci ; 14: 1298946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239227

RESUMO

The current study identified two new climate-resilient groundnut-based cropping systems (GBCSs), viz., groundnut-fenugreek cropping system (GFCS) and groundnut-marigold cropping system (GMCS), with appropriate system-mode bio-compost embedded nutrient management schedules (SBINMSs) for semi-arid South Asia. This 5-year field study revealed that the GMCS along with leaf compost (LC) + 50% recommended dose of fertilizers (RDF50) in wet-season crop (groundnut) and 100% RDF (RDF100) in winter-season crop (marigold) exhibited the highest system productivity (5.13-5.99 t/ha), system profits (US$ 1,767-2,688/ha), and soil fertility (available NPK). Among SBINMSs, the application of 5 t/ha leaf and cow dung mixture compost (LCMC) with RDF50 showed the highest increase (0.41%) in soil organic carbon (SOC) followed by LC at 5 t/ha with RDF50 and RDF100. Legume-legume rotation (GFCS) had significantly higher soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) than legume-non-legume rotations (groundnut-wheat cropping system (GWCS) and GMCS). Among SBINMSs, the highest SMBC (201 µg/g dry soil) and SMBN (27.9 µg/g dry soil) were obtained when LCMC+RDF50 was applied to groundnut. The SMBC : SMBN ratio was the highest in the GWCS. LC+RDF50 exhibited the highest SMBC : SOC ratio (51.6). The largest increase in soil enzymatic activities was observed under LCMC+RDF50. Overall, the GMCS with LC+RDF50 in the wet season and RDF100 in the winter season proved highly productive and remunerative with better soil bio-fertility. SBINMSs saved chemical fertilizers by ~25%' in addition to enhanced system productivity and system profits across GBCSs in semi-arid regions of South Asia. Future research needs to focus on studying the potential of diversified production systems on water and environmental footprints, carbon dynamics, and energy productivity under semi-arid ecologies.

20.
Front Microbiol ; 13: 996220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419419

RESUMO

Information on the role of boron (B) on soil physico-chemical and biological entities is scarce, and the precise mechanism in soil is still obscure. Present field investigation aimed to assessing the implication of direct and residual effect of graded levels of applied-B on soil biological entities and its concomitant impact on crop productivity. The treatments comprised of five graded levels of B with four replications. To assess the direct effect of B-fertilization, cauliflower was grown as a test crop wherein, B-fertilization was done every year. For assessment of succeeding residual effects of B-fertilization, cowpea and okra were grown as test crops and, B-fertilization was phased out in both crops. The 100% recommended dose of NPK (RDF) along with FYM was uniformly applied to all crops under CCOCS. Results indicated that the direct effect of B had the edge over residual effect of B in affecting soil physico-chemical and biological entities under CCOCS. Amongst the graded levels of B, application of the highest B level (2 kg ha-1) was most prominent in augmenting microbiological pools in soil at different crop growth stages. The order of B treatments in respect of MBC, MBN, and soil respiration at different crop growth stages was 2.0 kg B ha-1 > 1.5 kg B ha-1 > 1.0 kg B ha-1 > 0.5 kg B ha-1 > 0 kg B ha-1, respectively. Moreover, maximum recoveries of potentially mineralizable-C (PMC) and potentially mineralizable-N (PMN) were noticed under 2 kg B ha-1. Analogous trend was recorded in soil microbial populations at different crop growth stages. Similarly, escalating B levels up to 2 kg B ha-1 exhibited significantly greater soil enzymatic activities viz., arylsulphatase (AS), dehydrogenase (DH), fluorescein diacetate (FDA) and phosphomonoesterase (PMA), except urease enzyme (UE) which showed an antagonistic effect of applied-B in soil. Greater geometric mean enzyme activity (GMEA) and soil functional diversity index were recorded under 2 kg B ha-1 in CCOCS, at all crop growth stages over control. The inclusive results indicated that different soil physico-chemical and biological properties CCOCS can be invariably improved by the application of graded levels of B up to 2 kg B ha-1 in an acid Inceptisol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...